一、UDF
1、UDF
UDF:User Defined Function。用户自定义函数。
2、scala案例
package cn.spark.study.sqlimport org.apache.spark.SparkConfimport org.apache.spark.SparkContextimport org.apache.spark.sql.SQLContextimport org.apache.spark.sql.Rowimport org.apache.spark.sql.types.StructTypeimport org.apache.spark.sql.types.StructFieldimport org.apache.spark.sql.types.StringTypeobject UDF { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local").setAppName("UDF") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) // 构造模拟数据 val names = Array("Leo", "Marry", "Jack", "Tom") val namesRDD = sc.parallelize(names, 5) val namesRowRDD = namesRDD.map(name => Row(name)) val structType = StructType(Array(StructField("name", StringType, true))) val namesDF = sqlContext.createDataFrame(namesRowRDD, structType) // 注册一张names表 namesDF.registerTempTable("names") // 定义和注册自定义函数 // 定义函数:自己写匿名函数 // 注册函数:SQLContext.udf.register() // UDF函数名:strLen; 函数体(匿名函数):(str: String) => str.length() sqlContext.udf.register("strLen", (str: String) => str.length()) // 使用自定义函数 sqlContext.sql("select name, strLen(name) from names") .collect() .foreach(println) }}
3、java案例
package cn.spark.study.sql;import java.util.ArrayList;import java.util.List;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.SQLContext;import org.apache.spark.sql.api.java.UDF1;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructField;import org.apache.spark.sql.types.StructType;public class UDF { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("UDFJava").setMaster("local"); JavaSparkContext sparkContext = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sparkContext); ListstringList = new ArrayList (); stringList.add("Leo"); stringList.add("Marry"); stringList.add("Jack"); stringList.add("Tom"); JavaRDD rdd = sparkContext.parallelize(stringList); JavaRDD nameRDD = rdd.map(new Function
() { private static final long serialVersionUID = 1L; @Override public Row call(String v1) throws Exception { return RowFactory.create(v1); } }); List fieldList = new ArrayList (); fieldList.add(DataTypes.createStructField("name", DataTypes.StringType, true)); StructType structType = DataTypes.createStructType(fieldList); DataFrame dataFrame = sqlContext.createDataFrame(nameRDD, structType); dataFrame.registerTempTable("name"); sqlContext.udf().register("strLen", new UDF1 () { private static final long serialVersionUID = 1L; @Override public Integer call(String s) throws Exception { // TODO Auto-generated method stub return s.length(); } }, DataTypes.IntegerType); sqlContext.sql("select name, strLen(name) from name").javaRDD(). foreach(new VoidFunction () { private static final long serialVersionUID = 1L; @Override public void call(Row row) throws Exception { System.out.println(row); } }); }}
二、UDAF
1、概述
UDAF:User Defined Aggregate Function。用户自定义聚合函数。是Spark 1.5.x引入的最新特性。UDF,其实更多的是针对单行输入,返回一个输出,这里的UDAF,则可以针对一组(多行)输入,进行聚合计算,返回一个输出,功能更加强大
使用:1. 自定义类继承UserDefinedAggregateFunction,对每个阶段方法做实现2. 在spark中注册UDAF,为其绑定一个名字3. 然后就可以在sql语句中使用上面绑定的名字调用
2、scala案例
统计字符串次数的例子,先定义一个类继承UserDefinedAggregateFunction:
package cn.spark.study.sqlimport org.apache.spark.sql.expressions.UserDefinedAggregateFunctionimport org.apache.spark.sql.types.StructTypeimport org.apache.spark.sql.types.DataTypeimport org.apache.spark.sql.expressions.MutableAggregationBufferimport org.apache.spark.sql.Rowimport org.apache.spark.sql.types.StructFieldimport org.apache.spark.sql.types.StringTypeimport org.apache.spark.sql.types.IntegerType/** * @author Administrator */class StringCount extends UserDefinedAggregateFunction { // inputSchema,指的是,输入数据的类型 def inputSchema: StructType = { StructType(Array(StructField("str", StringType, true))) } // bufferSchema,指的是,中间进行聚合时,所处理的数据的类型 def bufferSchema: StructType = { StructType(Array(StructField("count", IntegerType, true))) } // dataType,指的是,函数返回值的类型 def dataType: DataType = { IntegerType } def deterministic: Boolean = { true } // 为每个分组的数据执行初始化操作 def initialize(buffer: MutableAggregationBuffer): Unit = { buffer(0) = 0 } // 指的是,每个分组,有新的值进来的时候,如何进行分组对应的聚合值的计算 def update(buffer: MutableAggregationBuffer, input: Row): Unit = { buffer(0) = buffer.getAs[Int](0) + 1 } // 由于Spark是分布式的,所以一个分组的数据,可能会在不同的节点上进行局部聚合,就是update // 但是,最后一个分组,在各个节点上的聚合值,要进行merge,也就是合并 def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { buffer1(0) = buffer1.getAs[Int](0) + buffer2.getAs[Int](0) } // 最后,指的是,一个分组的聚合值,如何通过中间的缓存聚合值,最后返回一个最终的聚合值 def evaluate(buffer: Row): Any = { buffer.getAs[Int](0) } }
然后注册并使用它:
package cn.spark.study.sqlimport org.apache.spark.SparkConfimport org.apache.spark.SparkContextimport org.apache.spark.sql.SQLContextimport org.apache.spark.sql.Rowimport org.apache.spark.sql.types.StructTypeimport org.apache.spark.sql.types.StructFieldimport org.apache.spark.sql.types.StringType/** * @author Administrator */object UDAF { def main(args: Array[String]): Unit = { val conf = new SparkConf() .setMaster("local") .setAppName("UDAF") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) // 构造模拟数据 val names = Array("Leo", "Marry", "Jack", "Tom", "Tom", "Tom", "Leo") val namesRDD = sc.parallelize(names, 5) val namesRowRDD = namesRDD.map { name => Row(name) } val structType = StructType(Array(StructField("name", StringType, true))) val namesDF = sqlContext.createDataFrame(namesRowRDD, structType) // 注册一张names表 namesDF.registerTempTable("names") // 定义和注册自定义函数 // 定义函数:自己写匿名函数 // 注册函数:SQLContext.udf.register() sqlContext.udf.register("strCount", new StringCount) // 使用自定义函数 sqlContext.sql("select name,strCount(name) from names group by name") .collect() .foreach(println) } }